Part Number Hot Search : 
BS804 A1516 A2F060 A2F060 CRB32C1 LT1089MK MAX168 351S8E
Product Description
Full Text Search
 

To Download V23990-P586-A20-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p586-*2*-pm flow1 600v/50a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt! / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives types V23990-P586-A20-PM v23990-p586-a20y-pm v23990-p586-a208-pm v23990-p586-c20-pm v23990-p586-c20y-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 t p =10ms 50 hz half sine wave t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 38 t c =80c 48 t h =80c 70 t c =80c 106 t sc t j 150c 6 s v cc v ge =15v 360 v w a v c 175 v ce i c v ge i cpulse t j max 150 a 600 a v t j =t j max t j =t j max vce 1200v, tj top max t p limited by t j max turn off safe operating area collector-emitter break down voltage dc collector current power dissipation per igbt maximum junction temperature short circuit ratings pulsed collector current t j =t j max t j =t j max p tot dc forward current surge forward current t j =25c 310 i2t-value features flow1 target applications schematic maximum ratings i fav a 2 s i fsm condition input rectifier diode 250 a a w power dissipation per diode i 2 t p tot gate-emitter peak voltage 150 20
v23990-p586-*2*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 36 t c =80c 48 t h =80c 58 t c =80c 87 brake transistor t h =80c 26 t c =80c 33 t h =80c 46 t c =80c 70 t sc t j 150c 6 s v cc v ge =15v 360 v brake diode t h =80c 13 t c =80c 18 t h =80c 20 t c =80c 30 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 600 t j max i frm p tot a v v t j =t j max short circuit ratings turn off safe operating area dc collector current power dissipation per igbt v ce 1200v, t j t op max 175 maximum junction temperature t j max v c w t p limited by t j max t j =t j max 20 a 90 a 90 gate-emitter peak voltage p tot collector-emitter break down voltage pulsed collector current repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage w 175 c power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current v i frm v rrm v ce i cpuls i c v ge t j =t j max a i f v rrm a c maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current peak repetitive reverse voltage w a a t p limited by t j max -40+(tjmax - 25) c storage temperature t stg -40+125 c comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance 600 600 40 100 copyright vincotech 2 revision: 2
v23990-p586-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 0,83 tj=25c 8 tj=125c 11 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh 1,89 thermal resistance chip to heatsink per chip r thjh 1,19 tj=25c 5 5,8 6,5 tj=125c tj=25c 1,76 tj=125c 2,06 tj=25c 0,04 tj=125c 1 tj=25c 600 tj=125c tj=25c 168 tj=125c 171 tj=25c 23 tj=125c 27 tj=25c 213 tj=125c 228 tj=25c 84 tj=125c 100 tj=25c 1,19 tj=125c 1,60 tj=25c 1,20 tj=125c 1,55 thermal resistance chip to heatsink per chip r thjh 1,25 thermal resistance chip to heatsink per chip r thjh 1,06 tj=25c 1,2 1,85 1,9 tj=125c 1,94 tj=25c 37 tj=125c 42 tj=25c 144 tj=125c 217 tj=25c 1,9 tj=125c 3,4 di(rec)max tj=25c 1568 /dt tj=125c 1145 tj=25c 0,31 tj=125c 0,60 thermal resistance chip to heatsink per chip r thjh 1,65 thermal resistance chip to heatsink per chip r thjh 1,4 preapplied phase change material thermal grease thickness 50um = 1 w/mk p reapplied phase change material k/w - tj=25c 310 3140 v 50 15 0 t r t d(off) v ce =v ge thermal grease thickness 50um = 1 w/mk q gate erec c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value c onditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 30 3 0 30 k/w v v m ma r everse current i r c mws a/s k/w k/w f=1mhz rgon=16 0 2 0 15 rgoff=16 15 t urn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r everse transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 600 25 0 50 50 0,0008 300 1500 thermal grease thickness 50um = 1 w/mk r gon=16 93 v n s a nc na k/w v 200 mws ns pf ma k/w p reapplied phase change material tj=25c copyright vincotech 3 revision: 2
v23990-p586-*2*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 4,1 4,9 5,7 tj=125c tj=25c 1,1 1,55 1,9 tj=125c 1,74 tj=25c 0,04 tj=125c 1,00 tj=25c 300 tj=125c - tj=25c 95 tj=125c 95 tj=25c 16 tj=125c 19 tj=25c 141 tj=125c 157 tj=25c 86 tj=125c 99 tj=25c 0,50 tj=125c 0,72 tj=25c 0,63 tj=125c 0,85 thermal resistance chip to heatsink per chip r thjh 2,07 thermal resistance chip to heatsink per chip r thjh 1,78 tj=25c 1,25 1,42 1,95 tj=125c 1,28 tj=25c 27 tj=125c tj=25c 19 tj=125c 20 tj=25c 33 tj=125c 237 tj=25c 0,81 tj=125c 0,81 di(rec)max tj=25c 1684 /dt tj=125c 920 tj=25c 0,14 tj=125c 0,30 thermal resistance chip to heatsink per chip r thjh 3,58 thermal resistance chip to heatsink per chip r thjh 3,11 b tj=25c vincotech ntc reference b-value 3950 k b (25/100) tj=25c 3996 k tj=25c b-value b (25/50) tol. 3% v v a n s a/s a mws c v k/w k/w % 22000 5 - 5 50 tj=25c 2 200 tj=25c 167 collector-emitter cut-off incl diode gate emitter threshold voltage 30 0,00043 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gate charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor k/w nc k/w brake transistor mw/k p ower dissipation p mw rated resistance r power dissipation constant deviation of r25 ? r/r i ges 0 15 rgon=16 rgoff=16 v ce =v ge f=1mhz 15 0 0 20 30 m a na ns pf mws v f i r i rrm diode forward voltage reverse leakage current 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor thermal grease t hickness 50um = 1 w/mk r gon=16 rgon=16 thermal grease t hickness 50um = 1 w/mk p reapplied phase change material 300 20 20 600 600 300 25 tj=25c t=25c t=25c tj=25c 108 1630 preapplied phase change material copyright vincotech 4 revision: 2
v23990-p586-*2*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) 0 11 22 33 44 55 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0,0 0,5 1,0 1,5 2,0 2,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 2
v23990-p586-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a output inverter e on high t e off high t e on low t e off low t 0 1 2 3 4 0 20 40 60 80 100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 0 10 20 30 40 50 60 70 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0 20 40 60 80 100 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,2 0,4 0,6 0,8 1 0 10 20 30 40 50 60 70 r g ( w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 6 r evision: 2
v23990-p586-*2*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 50 a r goff = 16 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 80 90 100 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0,07 0,14 0,21 0,28 0,35 0 10 20 30 40 50 60 70 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,1 0,2 0,2 0,3 0,3 0 20 40 60 80 100 i c (a) t rr ( m s) 25 / 125 25 / 125 copyright vincotech 7 r evision: 2
v23990-p586-*2*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 15 30 45 60 75 90 0 10 20 30 40 50 60 70 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 0,6 1,2 1,8 2,4 3 3,6 4,2 0 14 28 42 56 70 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 10 20 30 40 50 0 20 40 60 80 100 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 20 40 60 80 100 i c (a) q rr ( m c) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 8 r evision: 2
v23990-p586-*2*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 300 v v r = 300 v v ge = 15 v i f = 50 a r gon = 16 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,25 k/w rthjh = 1,06 k/w r thjh = 1,65 k/w rthjh = 1,40 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,7e+00 3,15 3,7e+00 0,08 3,2e+00 2,79 3,2e+00 0,28 5,5e-01 0,47 5,5e-01 0,28 4,6e-01 0,39 4,6e-01 0,66 1,4e-01 0,12 1,4e-01 0,62 1,1e-01 0,10 1,1e-01 0,23 1,9e-02 0,02 1,9e-02 0,39 1,8e-02 0,02 1,8e-02 0,05 2,9e-03 0,00 2,9e-03 0,14 3,2e-03 0,00 3,2e-03 0,06 3,0e-04 0,00 3,0e-04 0,14 4,1e-04 0,00 4,1e-04 thermal grease phase change material thermal grease phase change material output inverter phase change material phase change material t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt di rec /dt high t 0 1000 2000 3000 4000 5000 6000 7000 0 10 20 30 40 50 60 70 r gon ( w ww w ) di rec / dt (a/ m s) di o /dt low t di 0 /dt high t di 0 /dt di rec /dt low t di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 400 800 1200 1600 2000 2400 2800 0 20 40 60 80 100 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 125 25 / 125 copyright vincotech 9 r evision: 2
v23990-p586-*2*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) i c (a) 0 25 50 75 100 125 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
v23990-p586-*2*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 50 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) v ge = f(q ge ) at at v ce = 600 v v ce 600 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 10us 0 2,5 5 7,5 10 12,5 15 17,5 0 50 100 150 200 250 300 350 400 q g (nc) v ge (v) 120v 480v 4 5 6 7 8 9 10 11 12 13 10 11 12 13 14 15 v ge (v) t sc (s) 200 300 400 500 600 700 800 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 2
v23990-p586-*2*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 20 40 60 80 100 120 140 160 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 2
v23990-p586-*2*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) 0 6 12 18 24 30 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 70 80 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 2
v23990-p586-*2*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 29 a r goff = 16 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 29 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0 10 20 30 40 50 60 i c (a) e (mws) t j = t jmax -25c t j = 25c e rec 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) t j = t jmax -25c e off e on t j = 25c e on e off 0,0 0,5 1,0 1,5 2,0 0 10 20 30 40 50 60 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0,3 0,6 0,9 1,2 1,5 1,8 0 10 20 30 40 50 60 70 r g ( w ww w ) e (mws) 25 / 125 25 / 125 25 / 125 25 / 125 copyright vincotech 1 4 revision: 2
v23990-p586-*2*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 300 v v ce = 300 v v ge = 15 v v ge = 15 v r gon = 16 i c = 29 a r goff = 16 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 2,07 k/w r thjh = 1,78 k/w r thjh = 3,58 k/w r thjh = 3,11 k/w thermal grease phase change material brake thermal grease phase change material t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 60 70 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 copyright vincotech 15 revision: 2
v23990-p586-*2*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 17 34 51 68 85 0 35 70 105 140 175 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 10 20 30 40 50 0 35 70 105 140 175 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 35 70 105 140 175 th ( o c) i f (a) copyright vincotech 16 revision: 2
v23990-p586-*2*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,89 k/w r thjh = 1,62 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge phase change material thermal grease 0 20 40 60 80 100 120 0,0 0,4 0,8 1,2 1,6 2,0 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 16 32 48 64 80 0 50 100 150 t h ( o c) p tot (w) 0 15 30 45 60 0 50 100 150 t h ( o c) i f (a) copyright vincotech 17 revision: 2
v23990-p586-*2*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 25 45 65 85 105 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 18 revision: 2
v23990-p586-*2*-pm t j 125 c r gon 4  r goff 4  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,29 s t don = 0,11 s t eoff = 0,67 s t eon = 0,39 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,11 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -40 0 40 80 120 -0,4 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t eoff v ce i c v ge t doff i c10% v ge10% t don v ce 3% -25 0 25 50 75 100 125 150 175 200 4,8 5 5,2 5,4 5,6 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% -25 0 25 50 75 100 125 150 175 200 4,9 5 5,1 5,2 5,3 5,4 time(us) % t r v ce i c copyright vincotech 19 revision: 2
v23990-p586-*2*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 59,91 kw p on (100%) = 59,91 kw e off (100%) = 8,87 mj e on (100%) = 12,48 mj t eoff = 0,67 s t eon = 0,39 s figure 7 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 100 a i rrm (100%) = -83 a t rr = 0,51 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -20 20 60 100 140 180 4,8 4,9 5 5,1 5,2 5,3 5,4 5,5 5,6 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -120 -80 -40 0 40 80 120 5 5,2 5,4 5,6 5,8 time(us) % i d v d fitted copyright vincotech 20 revision: 2
v23990-p586-*2*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 100 a p rec (100%) = 59,91 kw q rr (100%) = 20,73 c e rec (100%) = 7,85 mj t qrr = 1,03 s t erec = 1,03 s switching definitions output inverter t qrr -100 -50 0 50 100 150 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 % i d q rr time(us) -20 0 20 40 60 80 100 120 4,8 5 5,2 5,4 5,6 5,8 6 6,2 6,4 time(us) % p rec e rec t erec copyright vincotech 21 revision: 2
v23990-p586-*2*-pm in datamatrix as in packaging barcode as p586-a20-pm p586-a20-pm p586-a20y-pm p586-a20y-pm p586-a208-pm p586-a208-pm p586-c20-pm p586-c20-pm p586-c20y-pm p586-c20y-pm a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 w/o pin 1,31,32 rectifier break igbt break fwd ordering code pin table 17mm housing with solder pins w/o breake v23990-p586-c20-pm pin table pin table V23990-P586-A20-PM v23990-p586-a20y-pm v23990-p586-c20y-pm inverter igbt inverter fwd outline v23990-p586-a208-pm pinout ordering code & marking ordering code and marking - outline - pinout features version 17mm housing with solder pins and breake 17mm housing with pressfit pins and breake 17mm housing with pressfit pins w/o breake 12mm housing with solder pins and breake
v23990-p586-*2*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 2


▲Up To Search▲   

 
Price & Availability of V23990-P586-A20-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X